THE ABSOLUTE AND RELATIVE BETTI NUMBERS OF A MANIFOLD WITH BOUNDARY

GRIGORIOS TSAGAS

- 1. Consider a compact manifold M with a boundary B, so that M is the closure of an open submanifold of an n-dimensional orientable Riemannian manifold V, and B is a compact orientable (n-1)-dimensional manifold. Let $H_p(M, R)$ and $H_{n-p}\{(M, B), R\}$ be respectively the pth Betti group of M and the pth Betti group of M(mod. B). Then by Lefschetz duality theorem the pth Betti group $H_p(M, R)$ and the (n-p)th Betti group $H_{n-p}\{(M, B), R\}$ are dual, so that the absolute Betti number A_p and the relative Betti number R_{n-p} of the manifold M are equal. For a k-pinched manifold M, the numbers A_p and R_q for p=q=2 are zero, when the number k is greater than a number k and the second fundamental form on k satisfies some conditions. We can improve the number k, when the dimension of the manifold k is 5. These results are a generalization of those given in n
- 2. If α , β are two tensors of the manifold M of order p, then the local inner product of the two tensors α , β is defined by

$$(\alpha, \beta) = \frac{1}{p!} \alpha^{i_1 \cdots i_p} \beta_{i_1 \cdots i_p} = \frac{1}{p!} \alpha_{i_1 \cdots i_p} \beta^{i_1 \cdots i_p} ,$$

and the local norm of the tensor α is defined by

$$|\alpha|^2 = \frac{1}{p!} \alpha^{i_1 \cdots i_p} \alpha_{i_1 \cdots i_p}.$$

If η is the volume element of the manifold M, then the global inner product of the two tensors α , β and the global norm of the tensor α are defined, respectively,

$$\langle \alpha, \beta \rangle = \int_{M} (\alpha, \beta) \eta , \qquad \|\alpha\|^2 = \int_{M} |\alpha|^2 \eta .$$

If α is a p-form, then we have [6, p. 187]

(2.1)
$$\langle \Delta \alpha, \alpha \rangle = \|d\alpha\|^2 + \|\delta \alpha\|^2,$$

Communicated by W. P. A. Klingenberg, February 6, 1970. This paper was prepared with support from the S. F. B. grant.

where $\Delta\alpha$, $d\alpha$ and $\delta\alpha$ are the Laplacian, the exterior differentiation and the codifferentiation of α given by [7, pp. 1–2]

$$(2.2) \Delta \alpha = d\delta \alpha + \delta d\alpha ,$$

(2.3)
$$(d\alpha)_{j_1...j_{p+1}} = \frac{1}{p!} \varepsilon_{j_1...j_{p+1}}^{li_1...i_p} \nabla_l \alpha_{i_1...i_p} ,$$

$$(\delta\alpha)_{i_2\cdots i_p} = -V_l\alpha^l_{i_2\cdots i_p}.$$

The following relation is also valid [7, p. 4]:

(2.5)
$$\frac{1}{2}\Delta(|\alpha|^2) = (\alpha, \Delta\alpha) - |\nabla\alpha|^2 + \frac{1}{2[(p-1)!]}Q_p(\alpha),$$

where

$$(2.6) |\nabla \alpha|^2 = \frac{1}{p!} \nabla_i \alpha_{i_1 \cdots i_p} \nabla^i \alpha^{i_1 \cdots i_p},$$

$$(2.7) Q_p(\alpha) = (p-1)R_{ijhl}\alpha^{iji_3\cdots ip}\alpha^{hl}_{i_3\cdots ip} - 2R_{hl}\alpha^{hi_2\cdots ip}\alpha^{l}_{i_2\cdots ip}.$$

For a point P on the boundary B, let (u^1, \dots, u^{n-1}) and (v^1, \dots, v^n) be two local coordinate systems of the point P considered as a point of B and M respectively. Then the boundary B is represented locally by

$$(2.8) v^i = f^i(u^1, \dots, u^{n-1}), i = 1, \dots, n,$$

in $U(P) \cap M$, where U(P) is a coordinate neighborhood of V. Denote by N the normal vector field of the boundary B and choose the coordinate system (u^1, \dots, u^{n-1}) such that the vector fields $N, \partial/\partial u^1, \dots, \partial/\partial u^{n-1}$ form a positive sense of M with respect to the basis $\partial/\partial u^1, \dots, \partial/\partial u^n$. Then Stokes' theorem can be stated as follows. If $\gamma = (\gamma_i)$ is an arbitrary vector field on M, then [9, p. 589]

(2.9)
$$\int_{\mathbb{R}} (\gamma, N) \bar{\eta} = - \int_{\mathbb{R}} \delta \gamma \eta,$$

where

$$\bar{\eta} = \sqrt{h} du^1 \wedge \cdots \wedge du^{n-1}, \eta = \sqrt{g} dv^1 \wedge \cdots \wedge dv^n,$$

h being the determinant of the metric on the boundary B, which is obtained under the assumption that the mapping F defined by (2.8) is an isometric immersion of M into B.

A p-form $\alpha = (\alpha_{i_1 \cdots i_n})$ is tangential to B if it satisfies the relation [10, p. 431]:

$$\alpha^{i_1\cdots i_p}=(\partial v^{i_1}/\partial u^{j_1})\cdots(\partial v^{i_p}/\partial u^{j_p})\overline{\alpha}^{j_1\cdots j_p},$$

or

$$\alpha^{ii_2\cdots i_p}N_i=0.$$

on B, where $\bar{\alpha} = (\bar{\alpha}_{i_1 \cdots i_p})$ is a p-form defined over B. The p-form α satisfies also the relation [10, p. 434]:

$$(2.10) \qquad (\nabla_{l}\alpha_{hi_{2}\cdots i_{p}})\alpha^{hi_{2}\cdots i_{p}}N^{l} = pH_{ij}\overline{\alpha}^{i}_{i_{2}\cdots i_{p}}\alpha^{ji_{2}\cdots i_{p}} - (p+1)(\nabla_{[l}\alpha_{hi_{2}\cdots i_{p}})\alpha^{li_{2}\cdots i_{p}}N^{h},$$

where

$$(p+1) \overline{V}_{[l} \alpha_{hi_2 \dots i_p]} = \overline{V}_{l} \alpha_{hi_2 \dots i_p} - \overline{V}_{h} \alpha_{li_2 \dots i_p}$$

$$- \overline{V}_{i_2} \alpha_{hli_3 \dots i_p} - \dots - \overline{V}_{i_p} \alpha_{hi_2 \dots i_{p-1} l} .$$

A p-form $\alpha = (\alpha_{i_1 \dots i_p})$ on the manifold M is normal to the boundary B, if it satisfies the relation [10, p. 432]:

$$\alpha_{i_1\cdots i_p}(\partial v^{i_1}/\partial u^{j_1})\cdots(\partial v^{i_p}/\partial u^{j_p})=0,$$

from which we obtain [10, p. 435]

$$(2.11) \qquad (\nabla_h \alpha_{li_2...i_p}) \alpha^{li_2...i_p} N^h = p(\nabla_h \alpha^h_{i_2...i_p}) \alpha^{li_2...i_p} N_l + pH^l_{l} \overline{\alpha}_{i_2...i_p} \overline{\alpha}^{i_2...i_p} - (p-1)pH_{ij} \overline{\alpha}^{i_{i_3...i_p}} \overline{\alpha}^{ji_3...i_p} ,$$

where $\overline{\alpha} = (\overline{\alpha}_{i_2 \cdots i_p})$ is a (p-1)-form defined by

$$\alpha_{li_2\cdots i_p}N^l=\overline{\alpha}_{j_2\cdots j_p}(\partial v^{j_2}/\partial u^{i_2})\cdots(\partial v^{j_p}/\partial u^{i_p})$$
.

3. Assume that the manifold M is of odd dimension n = 2m + 1 and admits a metric which is positively k-pinched, and let α be a harmonic 2-form on the manifold M. Then for any point P of the manifold there is a special basis (X_1^*, \dots, X_n^*) in the vector space M_P^* such that at the point P, α can be written as

$$(3.1) \quad \alpha = \alpha_{12}X_1^* \wedge X_2^* + \alpha_{34}X_3^* \wedge X_4^* + \cdots + \alpha_{2m-1,2m}X_{2m-1}^* \wedge X_{2m}^*.$$

Now consider the 2m-form β defined by

$$\beta = \frac{1}{m!} \alpha \wedge \cdots \wedge \alpha, (m \text{ times}),$$

which becomes, in consequence of (3.1),

(3.3)
$$\beta = \alpha_{12}\alpha_{34}\cdots\alpha_{2m-1,2m}X_1^*\wedge\cdots\wedge X_{2m}^*.$$

Since the manifold M is k-pinched, $Q_2(\alpha)$ and $Q_{2m}(\beta)$ satisfy the inequalities [8]:

(3.4)
$$\frac{1}{2}Q_2(\alpha) \leq -2(2m-1)k|\alpha|^2 + \frac{8}{3}(1-k)\delta,$$

(3.5)
$$\frac{1}{2[(2m-1)!]}Q_{2m}(\beta) \leq [-2mk|\beta|^2,$$

where

$$(3.6) \qquad \frac{|\alpha|^2 = \alpha_{12}^2 + \alpha_{34}^2 + \cdots + \alpha_{2m-1,2m}^2, \qquad |\beta|^2 = \alpha_{12}^2 \alpha_{34}^2 \cdots \alpha_{2m-1,2m}^2,}{\delta = \alpha_{12} \alpha_{34} + \cdots + \alpha_{12} \alpha_{2m-1,2m} + \cdots + \alpha_{2m-3,2m-2} \alpha_{2m-1,2m}}.$$

Applying the Laplace operator Δ to the function $|\beta|^2$, we get $\Delta(|\beta|^2) = \delta d(|\beta|^2)$ and therefore

$$\int \! \varDelta(|\beta|^2) \eta = \int \! \delta d(|\beta|^2) \eta \ .$$

By means of (2.5) and (2.9), the above relation becomes

$$-\frac{1}{2}\int_{\mathbb{R}}(N,d(|\beta|^2))\bar{\eta} = \int_{\mathbb{R}}\Big[(\beta,\Delta\beta) - |\nabla\beta|^2 + \frac{1}{2[(2m-1)!]}Q_{2m}(\beta)\Big]\eta,$$

which takes the form, due to (2.1),

$$(3.7) \quad \frac{1}{2} \int_{\mathbb{R}} (N, d(|\beta|^2)) \overline{\eta} = \int_{\mathbb{R}} \left[-|d\beta|^2 - |\delta\beta|^2 + |\overline{V}\beta|^2 - \frac{Q_{2m}(\beta)}{2[(2m-1)!]} \right] \eta \ .$$

By virtue of (3.5) and the relation $d\beta = 0$, a consequence of (3.2), from (3.7) it follows that

(3.8)
$$\frac{1}{2} \int_{B} (N, (d|\beta|^{2})) \overline{\eta} \geq \int_{M} [-|\delta\beta|^{2} + 2mk|\beta|^{2}] \eta.$$

For a harmonic 2-form α tangential or normal to the boundary B, formula (2.5) becomes [10, pp. 435-436]

$$rac{1}{2}(\varDelta |lpha|^2) = -|ec{arphi}lpha|^2 + rac{1}{2}Q_{\scriptscriptstyle 2}(lpha)$$
 ,

from which we get

$$rac{1}{2} |lpha|^{2m-2} \mathcal{A}(|lpha|^2) = -|lpha|^{2m-2} |arVarRapsilon|^2 + rac{1}{2} |lpha|^{2m-2} Q_2(lpha)$$
 ,

which together with (3.4) gives

(3.9)
$$-m \int_{M} |\alpha|^{2m-2} \Delta(|\alpha|^{2}) \eta \geq \int_{M} \left[2m |\alpha|^{2m-2} |\nabla \alpha|^{2} + 4m(2m-1)k |\alpha|^{2m} - \frac{16}{3} m(1-k)\delta |\alpha|^{2m-2} \right] \eta.$$

It is well known that the following relation holds:

$$\Delta[(|\alpha|^2)^m] = m|\alpha|^{2m-2}\Delta(|\alpha|^2) - m(m-1)|\alpha|^{2m-4}(d(|\alpha|^2))^2,$$

which implies the inequality

$$\Delta[(|\alpha|^2)^m] \leq m|\alpha|^{2m-2}\Delta(|\alpha|^2),$$

or

(3.10)
$$\int_{M} \Delta[(|\alpha|^{2})^{m}] \eta \leq \int_{M} m|\alpha|^{2m-2} \Delta(|\alpha|^{2}) \eta.$$

By means of (2.9), the relation (3.10) takes the form

(3.11)
$$\int_{B} (N, d[(|\alpha|^{2})^{m}]) \overline{\eta} \geq -\int_{M} m|\alpha|^{2m-2} \Delta(|\alpha|^{2}) \eta.$$

From (3.9) and (3.11) follows immediately the inequality

(3.12)
$$\frac{1}{2} \int_{\mathbb{R}} (N, |\alpha|^{2m-2} d(|\alpha|^{2})) \overline{\eta} \geq \int_{\mathbb{R}} \left[|\alpha|^{2m-2} |\overline{V}\alpha|^{2} - \frac{8}{3} (1-k) \delta |\alpha|^{2m-2} + 2(2m-1)k |\alpha|^{2m} \right] \eta.$$

By means of the inequality

$$|\delta\beta|^2 \le \frac{(2m-1)(m-1)}{m^{m-2}} |\nabla\alpha|^2 |\alpha|^{2m-2}$$

proved in [8], from (3.8) we obtain

$$(3.14) \frac{m^{m-2}}{2(2m-1)(m-1)} \int_{B} (N, d(|\beta|^{2})) \overline{\eta} \geq \int_{M} \left[-|\overline{V}\alpha|^{2} |\alpha|^{2m-2} + \frac{2m^{m-1}}{(2m-1)(m-1)} |\beta|^{2} \right] \eta.$$

Thus addition of (3.12) to (3.14) gives readily

$$\begin{split} &\frac{1}{2} \int\limits_{\mathbb{R}} 3(N, m^{m-2} d(|\beta|^2) + (2m-1)(m-1)|\alpha|^{2m-2} d(|\alpha|^2)) \overline{\eta} \\ &\geq \int\limits_{\mathbb{R}} 2[3(2m-1)^2 (m-1)k|\alpha|^{2m} - 4(2m-1)(m-1)(1-k)\delta |\alpha|^{2m-2} \\ &+ 3m^{m-1} k|\beta|^2] \eta \ , \end{split}$$

or

$$\int_{B} 3[m^{m-2}(\nabla_{l}\beta_{hi_{2}\cdots i_{2m}})\beta^{hi_{2}\cdots i_{2m}}N^{l}, \qquad (h < i_{2} < \cdots < i_{2m})$$

$$+ (2m-1)(m-1)|\alpha|^{2m-2}(\nabla_{l}\alpha_{hi_{2}})\alpha^{hi_{2}}N^{l}, \qquad (h < i_{2})]\overline{\eta}$$

$$\geq \int_{M} 2[3(2m-1)^{2}(m-1)k|\alpha|^{2m} - 4(2m-1)(m-1)(k-1)\delta|\alpha|^{2m-2}$$

$$+ 3km^{m-1}|\beta|^{2}]\eta.$$

If the harmonic 2-form α is tangential to B, then by means of (2.10), $d\alpha = 0$ and $d\beta = 0$, (3.15) becomes

$$\int_{B} 3H_{ij} [2m^{m-1}\overline{\beta}^{i}_{i_{2}\cdots i_{2m}}\overline{\beta}^{ji_{2}\cdots i_{2m}}, \qquad (i_{2} < \cdots < i_{2m})
+ 2(2m-1)(m-1)|\alpha|^{2m-2}\overline{\alpha}^{i}_{i_{2}}\overline{\alpha}^{ji_{2}}]\overline{\eta}
\geq \int_{M} 2[3(2m-1)^{2}(m-1)k|\alpha|^{2m} - 4(2m-1)(m-1)\delta|\alpha|^{2m-2}
+ 3km^{m-1}|\beta|^{2}]\eta.$$

We can prove with the same technique as in [8] that if k satisfies the inequality

$$(3.17) \quad k > \lambda = 2(2m-1)(m-1)^2 m / [m(m-1)(2m-1)(8m-5) + 3],$$

then the second member of (3.16) is positive. Hence we have the following theorem and corollary.

Theorem I. Let M be a compact k-pinched Riemannian manifold of dimension n = 2m + 1 with boundary B. If $k > \lambda$, given by (3.17), and the second fundamental form on the boundary is semi-negative, then the second absolute Betti number A_2 of the manifold vanishes.

Corollary I. For a compact k-pinched Riemannian manifold M of dimension n = 2m + 1 with a totally geodesic boundary, $A_2 = 0$ if

$$k > 2(2m-1)(m-1)^2m/[m(m-1)(2m-1)(8m-5)+3]$$
.

If the harmonic 2-form α is normal to B, then by means of (2.11) and $\delta\alpha$ = 0, (3.15) takes the form

$$\int_{B} 6\{m^{m-1}(\overline{V}_{h}\beta^{h}_{i_{2}\cdots i_{2m}})\beta^{li_{2}\cdots i_{2m}}N_{l} + H^{l}_{l}[m^{m-1}\overline{\beta}_{i_{2}\cdots i_{2m}}\overline{\beta}^{i_{2}\cdots i_{2m}} + (2m-1)(m-1)|\alpha|^{2m-2}\overline{\alpha}_{i_{2}}\overline{\alpha}^{i_{2}}] - H_{ij}[(2m-1)m^{m-1}\overline{\beta}^{i}_{i_{2}\cdots i_{2m}}\overline{\beta}^{ji_{3}\cdots i_{2m}} + (2m-1)(m-1)|\alpha|^{2m-2}\overline{\alpha}^{i}\overline{\alpha}^{j}]\}\overline{\eta}, \quad (i_{2} < i_{3} < \cdots < i_{2m}) \\ \geq \int_{M} 2[3(2m-1)^{2}(m-1)k|\alpha|^{2m} - 4(2m-1)(m-1)(k-1)\delta|\alpha|^{2m-2} + 3km^{m-1}|\beta|^{2}]\eta.$$

Denote the following quadratic form by $L(\alpha, \alpha)$:

$$L(\alpha, \alpha) = m^{m-1} (\overline{V}_h \beta^h_{i_2 \dots i_{2m}}) \beta^{li_2 \dots i_{2m}} N^l$$

$$+ H^l_{l} [m^{m-1} \overline{\beta}_{i_2 \dots i_{2m}} \overline{\beta}^{i_2 \dots i_{2m}} + (2m-1)(m-1) |\alpha|^{2m-2} \overline{\alpha}_{i_2} \overline{\alpha}^{i_2}]$$

$$- H_{ij} [(2m-1) m^{m-1} \overline{\beta}^{i}_{i_3 \dots i_{2m}} \overline{\beta}^{ji_3 \dots i_{2m}}$$

$$+ (2m-1)(m-1) |\alpha|^{2m-2} \overline{\alpha}^{i} \overline{\alpha}^{j}] , \qquad (i_2 < i_3 < \dots < i_{2m}) .$$

Therefore from (3.18) and (3.19) we conclude the theorem:

Theorem II. Let M be a compact k-pinched Riemannian manifold with boundary B. If $k > \lambda$ given by (3.17), and the quadratic form $L(\alpha, \alpha)$ defined by (3.19) is semi-negative, then the second relative Betti number R_2 of the manifold (mod. B) is zero.

4. In this section we use the same technique as in § 3 to improve the number λ if the dimension of the manifold is 5. By estimating the norm $|\delta \beta|^2$ at the point P and using the inequality

$$2(AB + CD)^2 < A^2(3B^2 + D^2) + C^2(B^2 + 3D^2)$$

we obtain

$$(4.1) |\delta\beta|^2 \le 5|\nabla\alpha|^2|\alpha|^2/2.$$

By means of (4.1) and m = 2, the inequality (3.8) becomes

$$(4.2) \qquad \frac{1}{5} \int_{\mathbb{R}} (N, d(|\beta|^2)) \overline{\eta} \geq \int_{\mathbb{R}} \left[-|\nabla \alpha|^2 |\alpha|^2 + \frac{8}{5} k |\beta|^2 \right] \eta.$$

Moreover for m = 2, (3.12) is reduced to

$$(4.3) \quad \frac{1}{2} \int_{\mathbb{R}} (N, |\alpha|^2 d(|\alpha|^2)) \overline{\eta} \geq \int_{\mathbb{R}} \left[|\alpha|^2 |\overline{V}\alpha|^2 - \frac{8}{3} (1-k) \delta |\alpha|^2 + 6k |\alpha|^4 \right] \eta,$$

which together with (4.2) implies

$$\begin{split} & \int\limits_{B} (N, 6d(|\beta|^2) \, + \, 15 |\alpha|^2 d(|\alpha|^2)) \overline{\eta} \\ & \geq \int\limits_{M} [180k |\alpha|^4 - \, 80(1 \, - \, k) \delta |\alpha|^2 \, + \, 48k |\beta|^2] \eta \; , \end{split}$$

or

$$(4.4) \int_{B} [6(\nabla_{l}\beta_{hi_{2}i_{3}i_{4}})\beta^{hi_{2}i_{3}i_{4}}N^{l} + 15|\alpha|^{2}(\nabla_{l}\alpha_{hi_{2}})\alpha^{hi_{2}}N^{l}]\overline{\eta}, \qquad (h < i_{2} < i_{3} < i_{4})$$

$$\geq \int_{M} [90k|\alpha|^{4} - 40(1-k)\delta|\alpha|^{2} + 24k|\beta|^{2}]\eta.$$

If the harmonic 2-form α is tangential to B, then (4.4) takes the form

$$\begin{split} & \int\limits_{B} 3H_{ij} [8 \bar{\beta}^{i}{}_{i_{2}i_{3}i_{4}} \bar{\beta}^{ji_{2}i_{3}i_{4}} + 10 |\alpha|^{2} \bar{\alpha}^{i}{}_{i_{2}} \bar{\alpha}^{ji_{2}}] \bar{\eta}, \qquad (i_{2} < i_{3} < i_{4}) \\ & \geq \int\limits_{M} [90k |\alpha|^{4} - 40(1-k)\delta |\alpha|^{2} + 24k |\beta|^{2}] \eta \; . \end{split}$$

If k > 10/58, then the second member of the above inequality is positive. Thus we obtain the following theorem and corollary.

Theorem III. Let M be a compact k-pinched Riemannian manifold of dimension 5 with boundary B. If k > 10/58 and the second fundamental form on B is semi-negative, then $A_2 = 0$.

Corollary II. For a compact k-pinched Riemannion manifold M of dimension 5 with a totally geodesic boundary, if k > 10/58, then $A_2 = 0$.

If the harmonic 2-form α is normal to the boundary B, then (4.4) becomes

$$\int_{B} 3[8(\overline{V}_{h}\beta^{h}_{i_{2}i_{3}i_{4}})\beta^{li_{2}i_{3}i_{4}}N_{l} + H^{l}_{l}(8\overline{\beta}_{i_{2}i_{3}i_{4}}\overline{\beta}^{i_{2}i_{3}i_{4}} + 10|\alpha|^{2}\overline{\alpha}_{i_{2}}\overline{\alpha}^{i_{2}})$$

$$- H_{ij}(24\overline{\beta}^{i}_{i_{3}i_{4}}\overline{\beta}^{ji_{3}i_{4}} + 10|\alpha|^{2}\overline{\alpha}^{i}\overline{\alpha}^{j})]\overline{\eta}, \qquad (i_{2} < i_{3} < i_{4})$$

$$\geq \int_{M} [90k|\alpha|^{4} - 40(1 - k)\delta|\alpha|^{2} + 24k|\beta|^{2}]\eta.$$

From the relation (4.5) and the quadratic form

$$G(\alpha, \alpha) = 8(\overline{V}_h \beta^h_{i_2 i_3 i_4}) \beta^{l_{i_2 i_3 i_4}} N_l + H^l_{l}(8\overline{\beta}_{i_2 i_3 i_4} \overline{\beta}^{i_2 i_3 i_4} + 10|\alpha|^2 \overline{\alpha}_{i_2} \overline{\alpha}^{i_2})$$

$$- H_{ij}(24\overline{\beta}^i_{i_3 i_4} \overline{\beta}^{j_i j_4 i_4} + 10|\alpha|^2 \overline{\alpha}^i \overline{\alpha}^j),$$

$$(i_2 < i_3 < i_4),$$

we thus have

Theorem IV. Let M be a compact k-pinched Riemannian manifold of dimension 5 with boundary B. If k > 10/58 and the quadratic form $G(\alpha, \alpha)$ defined by (4.6) is semi-negative, then the second relative Betti number R_2 of the manifold M (mod. B) vanishes.

5. If the boundary $\partial M = B = \phi$ and the dimension of the manifold is 5, then from the relation (4.4) we obtain the following theorem and corollary:

Theorem V. Let M be a compact orientable k-pinched Riemannian manifold of dimension 5 without boundary. If k > 10/58, then $H^2(M, \mathbf{R}) = 0$.

Corollary III. If a compact orientable k-pinched Riemannian manifold M of dimension 5 without boundary is homeomorphic to $S^2 \times S^3$, then $k \le 10/58$.

References

- [1] M. Berger, Sur les variétés (4/23)-pinchées de dimension 5, C. R. Acad. Sci. Paris 257 (1963) 4122-4125.
- [2] P. E. Conner, The Green's and Neumann's problems for differential forms on Riemannian manifolds, Proc. Nat. Acad. Sci. U.S.A. 40 (1954) 1151-1155.
- [3] G. F. D. Duff, Differential forms in manifolds with boundary, Ann. of Math. 56 (1952) 115-127.
- [4] G. F. D. Duff & D. C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Ann. of Math. 56 (1952) 128-156.
- [5] C. C. Hsiung, Curvature and Betti numbers of a compact Riemannian manifold with boundary, Politec. Torino Rend. Sem. Mat. 17 (1957/58) 95-131.
- [6] A. Lichnerowicz, Théorie globale des connexions et des groupes d'holonomie, Cremonese, Rome, 1955.
- [7] —, Géométrie des groupes de transformation, Dunod, Paris, 1958.
- [8] G. Tsagas, An improvement of the method of Lichnerowicz-Bochner on the Betti numbers nad curvature of a compact manifold, Ann. Mat. Pura Appl. (IV)83 (1969) 227-234.
- [9] K. Yano, On harmonic and Killing vector fields in Riemannian spaces with boundary, Ann. of Math. 69 (1959) 588-597.
- [10] —, Harmonic and Killing tensor fields in Riemannian spaces with boundary,
 J. Math. Soc. Japan 19 (1958) 430-437.

University of Bonn